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THE PRESSURE-FLOW CHARACTERISTIC OF
CIRCULAR MOLDING CHANNELS WITH A

NONISOTHERMAL FLOW OF THERMOPLASTIC
POLYMERS

L. M. Ul'ev UDC 532.135:678.027

The article contains results of a numerical investigation of the pressure-flow characteristic of high-viscosity
flows for different rates of heat transfer with the environment. The effect of nonmonotonicity of the charac-

teristic AP(Vy) on the stabtlity of operation of the die head of extruston apparatus ts discussed.

In extrusion production and processing of thermoplastic materials, polymer melts arc pressed through dics,
finc molding channcls, which are of a cylindrical shape in the production of strands, rods, and granules. Since
polymer solutions are high-viscosity liquids, because of substantial encrgy dissipation and a strong dependence of
viscosity on temperature, in the dies the liquid flows undcr high gradients of temperature and viscosity. [n the die
at different flow rates of the melt and different conditions of heat transfer with the environment, the viscosity
distribution will determine the pressure-flow characteristic of the die. With this characteristic known, it is possible
to choose optimal process and design parameters of cxtrusion [1].

The pressure-flow characteristics of dies were studied in {2] for a De Haven fluid at various melt
temperatures, but the authors only considered an isothermal flow. In nonisothermal viscous flows the pressure-flow
characteristics were considered earlier mainly for special cases of a flow in a stabilized heat-transfer region [3, 4]
or for a flow with negligible dissipation [§5-7]. In these studies limiting boundary conditions or those with a preset
wall temperature [3, 4-7] or the second-kind boundary conditions [5] were chosen. In [8-11] the characteristics
were obtained for the third-kind boundary conditions within the initial thermal length, but the temperature across
the channel was assumed constant, which allowed the authors to include longitudinal convective heat transfer only
as an average, while transverse convective heat transfer was completely ignored, just as in all the works mentioned
earlier. In {5-11] nonmonotonic pressure-flow characteristics were obtained, and in [11] they were found only for
a plane channel. In [12] the isothermal characteristic AP(Vy) was studied for a flow of oil in a circular capillary
with thermal boundary conditions of the first kind and flow with an adiabatic wall. In that work both energy
dissipation and transverse convective heat transfer were taken into consideration. The obtained characteristic
AP(Vp) is strictly monotonic, but the Gneme —Griffith numbers are 3—~4 orders of magnitude smaller as compared
with the polymer flow at the same velocities.

In the present work the pressure-flow characteristic is studied for a flow of thermoplastic polyurethane
(TPU) melts in circular cylindrical channels at various rates of heat transfer with the environment.

Within the range of processing parameters, melts of glue-type TPU (Vitur T-12K, etc.) bchave as
Newtonian fluids with the viscosity-temperature relation {13}

i (T) = pg exp li% (lT——-Tl—OH , (H

where g = 103 Pa-sec, £ = (10° = 3-10°) J/mole, T = 463°.
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For practical flow rates Q = 10™% to 10" "m*/sec and physical properties of the melt p = 1200 kg/m3,

a = 1077 m%/sec, and ro = (1 — 3)-1073 m, we have Re << 107 2; then the mechanical relaxation length is equal
to [14]

L =V, r(z,p/y =107° m, (2)

and the thermal relaxation length is equal to [14]

IZ:VOrépc/RZIOm. (3)

i.e., at the channel inlet the velocity profile can be assumed to be developed and ‘o correspond to the temperature
distribution.

If the fluid is led to the channel with a homogencous temperature distribution, the main changes in the
velocity distribution occur in the scction where a low-viscosity shear layer is formed [14 ]

I8 ~Pc Gn* 2rO ~10 'm. (4)

The quantity Lo = /3 is the characteristic longitudinal dimension for a flow with a homogencous intial
temperaturce distribution, and Lg = /; is the characteristic dimension for a flow with a previousiy developed low-
viscosity thermal layer, for example, in the flow in the conic part of the die [15], and the radius of the channel is
the characteristic transverse dimension.

Using thesc quantities, it is possible to cvaluate the derivatives in the equations of convective heat transfer
[116/70r ~1/rg; 8/9z ~1/Ly.

Under axisymmetric boundary conditions, the geometry of the channel allows the flow to be considered
axisymmetric, and Egs. (2) and (3) show that the velocity distribution will always have time to adjust to the
temperature distribution. In this case the discontinuity equation estimates the radial component of the velocity
V, = V,(ro/Lg) = o(V,), i.e., in the equations of motion the terms with V, can be neglected, but, as is shown in
{15, 16], in the equation of heat transfer, convective heat transfer cannot be neglected.

The above assumptions, evaluation of the derivatives, the number Pe = 105, and the smallness of Re allow

us to simplify the steady-state system of equations of hydrodynamics and heat transfer [1], which, in terms of the
dimensionless variables and parameters
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%@(Ew®)+%(@)=ﬁl-é—g(5—g) Gn (%E)Z. ™

0sf<1, O0=yslL/ry,
The boundary conditions
e av
GE=0. GF=0, £=0, 0sysL/r, ®)
RS . o ’ .
v=0.w=0,7E—=—Bx(@—®u),;=l,OSZsL/rO, 9
©=0, M=0, 0<&<l, y=0, (10)

2 [ vkdE = 1. (1

For solution of the formulated problem use will be made of the method developed in [13, 161, in which the
flow region is divided into N concentric cvlindrical layers and in the cross-scction of cach i-th laver the viscosity
is assumed constant and equal to m; taken at the layer cross section-average temperature. [n this approach, system
of Egs. (6)-(8) is divided into 3N equations, and 5(¥ — 1) conditions of conjugation of velocities, temperatures,
and shear stresses at the boundaries of the layers are added to boundary conditions (9)-(12). After integration of
Egs. (6) and (7) with respect to £ and averaging (9) over the cross-sectional area of the layer, we obtain a system
of ordinary differential equations describing the average temperatures in the layers and the pressure:

(o) 2
do; 2 — Gnm; (dv :
lz, ((w; =S (0, -0,,) - (O, -0,_1+ — (12)
dy v d; Pev, |d¢
dTl Nogb g l a3
= 8 2 il - g8,
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Here i =1, 2, ..., N and then Oy, = ©,. The derivative dv;/dy is found from the distribution vy(§):
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Fig. 1. Pressure drop in cvlindrical channcel: @) versus flow velocity and the
ambient temperature at Bi = 3.75; b) solid curves for flow with Bi = 3.75;
dashed curves with Bi=15: 1) for ©,=3.2; 2) @,=1.5; ¢) flow with adiabatic
wall: 1) 3 =0.77-1073,2) 1.44-1072, 3) 3.88-107% 4) 4.7-10"% P, Pa; V,
m/sec.

ASt d[+K (14)

i K=1 Mirk ‘
and the expressions dm,/dy = —(m;/ (1 + $8))(d®,/dx), (dv/3E)? arc also determined from (14).

In [16] it is shown that by changing the heat transfer rate at the boundary, it is possible to control the
distributions of temperature, velocity, and pressure in a channel with high-viscosity flows. We will study how the
characteristic AP{Vy) behaves in a channel section with dimensions £ = 0.12 m and rg = 1.5-107 > m for a =
81078 m%/sec, B = 1.44- 1072, and Bi = 3.75. For do this, we will consider some steady-state flows with different
average velocities. At the boundary the heat transfer rate will be changed by setting different values of ©a.

In the range of ©®, studied, irrespective of the initial direction of the heat flux, i.c., for both ©, > 0
and ©, < 0, the pressure-flow characteristic has an extremum (Fig. la), i.e.
rate is exceeded, the hydraulic resistance of the channel decreases.

, after a certain value of the flow

This result becomes clear if we consider the dependence of the pressure drop AP = P — Py on the
longitudinal coordinate. First, the effect of heat transfer at the boundary is excluded, and the curve AP(Vq) is
considered for flow with an adiabatic wall (Fig. l¢).

At low flow rates, the rates of shear are small, dissipation is insignificant, and all heat released can be
distributed uniformly over the cross-section of the flow. Although, in general, the temperature of the fluid rises
insignificantly along the channel, the velocity profile differs only slightly from the Poiscuille distribution (see Fig.
3y, which leads to only a slight deviation of the characteristic AP(z/ry) from a linear function (Fig. 2a). As the
flow rate increases, this behavior is observed until a low-viscosity boundary layer is formed within the channel.
The formation of this layer can be explained by the fact that with an increase in the flow rate, in the peripheral
flow the velocity gradient increases and so does the energy dissipation, which, because of the low thermal
conductivity of polymers, cannot relax during the residence time of the melt in the channel. As the temperature
rises at the wall, the viscosity decreases there, and the velocity profile becomes more filled, i.e., the rate of shear
in the periphery increases, which results in localization of the heat release. Meanwhile, the modulus of the pressure
gradient decreases, and the curve AP (y) markedly deviates from the line after the low-viscosity layer appears (Fig.
2a). The velocity at which the low-viscosity layer appears in the channel can be estimated from Eq. (4), assuming
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Fig. 2. Pressure distribution along the channcel: a) flow with adiabatic wall (1)
Vo= 1.44-10"2 m/scc, 2 1.44-107", 3) 2.82-107", 4 0.52. 5 3 m/sec; b)
flow at @, = 3 (1) V5= 8.48- 1072 m/sce, 2) Vo ~(1.4 — 4107 m/sec, 3
1.13 m/sec; o flow at ©, = =3 (1) Vy = 1.13-1077 m/sec, 2) 4241077
m/sec. ) 1411072 m/scc, 4 8.41-10772 m/scc, 5) 0.71 m.sec|; d) pressure
versus longitudinal coordinate and mcan flow velocity for @, = 0.

/3= L. In this case V3 ~3—4 cm/sec, which agrees well with numerical results. [t is clear that starting from this
velocity, substantial nonlinearity appears in the pressure-flow characteristic as well (Fig. 1c).

[t is in this region of formation of the low-viscosity boundary layer that the main restructuring of the
velocity profile occurs; therefore, the inclusion of transverse convective heat transfer becomes very important. As
was shown earlier [161], even for low velocities the ratio ¢,,/¢;, can be ~10, and, as is shown by calculations, for
high Vj this ratio can reach several tens, so the neglect of transverse convective heat transfer will result in an
incorrectly determined temperature distribution and consequently, in an incorrectly calculated pressure drop.

For higher flow rates, in the initial flow section the modulus of the pressure gradicnt is high, as is the
dissipation, which results in the rapid formation of a high-temperature low-viscosity layer and in a nearly
rectangular velocity profile (Fig. 3), which in the subsequent flow enhances the effects described. Indeed, when
the profile of the longitudinal component of the velocity is flattened, the radial componcnts are positive, which
prevents convective heating of the flow core. There dissipation is almost absent, since wn the central region
dv/dr = 0 (Fig. 3) and with the short residence time of the melt in the channel this region is heated insignificantly
by heat conduction. As a result, the central high-viscosity flow core is surrounded by a low-viscosity liquid layer,
and in the channel a high-temperature rod-like flow is developed with a low pressure gradient. Eventually, the
pressurc drop in the channel can be lower than in flow with low flow velocity, though at the channel inlet the
pressure drop is higher in the former case (Fig. 2a). As a result, in a nonisothermal flow the pressure-flow char-
acteristic is nonmonotonic.

In the case of heat transfer with the environment, the nonisothermality of the flow is determined not only
by dissipation but also by heat transfer at thc boundary. At ®, = 0 for flow at low velocitics, the temperaturc i$
distributed aimost uniformly across the channel (Fig. 3), but it is lower than the temperature at Bi =0, since some
of the energy is transferred to the environment. There the pressure falls more rapidly and over the length of the
channel AP is higher than it was earlier. At high flow velocities a high-temperature boundary layer is also formed,
but it is slightly wider than the boundary layer at Bi = 0 (Fig. 3), since, as a result of heat transfer near the wall,
the temperature falls, and the viscosity increases, which leads to a more—extended velocity profile, and there the
dissipation is substantial over the largest part of the channel. Starting from a certain Vg, AP decreases, but for any
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Fig. 3. Distributions of (a) dimensionless longitudinal velocity and b)
dimensionless temperature across the channel. The left-hand half, for low
velocities Vg ~0.1 — 0.3 m/sec. Solid curves &, = 0, dot-dash curves 6, =
-3, dashed curves Bi=0: 1) fory =0, 2) 7.8, 3) 80.

Vo the condition 1AP(®©, = M1 > (AP (Bi = O)| is satisfied (see Fig. 2). It is interesting to note that for short

channels (L < 15ry) the pressure-flow function increases monotonically (Fig. 2d). For high Vj, it is there that the
low-viscosity layer is developed, and, as the flow rate increases, | V1 also increases.

For low flow velocities and ©, > 0 the liquid is heated uniformly; therefore, the pressure drop is slower
than it was earlier (Fig. 2b); for high velocities less energy is spent on formation of the thermal boundary laver,
because of which 1AP(@, > 0)I > 1AP(O®, =01 V V; (sce Fig. la).

In the case of ©®, < 0, the melt is cooled at the periphery at low flow velocities, the velocity profile is
extended, and energy dissipation becomes important in the central region as well. Therefore, the liquid is cooled
nonuniformly over the cross section (Fig. 3); the central part is even overheated, but due to an increase in u at the
periphery, 1AP| grows along the channel (see Fig. 2¢) (the curve of AP(y) is convex downward). For high ¥y, the
temperature is substantially lower at the wall than it is for other ®, (scc Fig. 3); therefore, the condition
[AP(©O, > 0V < IAP(O,=0)1 V Vy is satisfied (see Fig. la). 11 should be noted that at ©, < 0, as V increases,
very soon the rate of dissipation starts to prevail over the heat release to the environment, therefore the maximum
value of |AP(Vp) | is shifted leftward.

It should be noted that at low flow velocities the relation 1AP(®,)! mainly follows the function g = u(T),
since dissipative effects are unimportant there, and for a high-temperature flow |AP(©,) | is almost nonlinear (sce
Fig. D).

At constant ©, the rate of heat transfer with the environment is determined by the value of Bi. For
@, > 0, an increase in Bi results in the fact that at low Vj the liquid is heated more intensely and | AP| decreases.
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Fig. 4. Comparison of numerical results with experimental data (127 for
Newtonian flow of oil in channel with L = 4.54-107° and rg=1.3" 107" m.
Solid curves, calculation; dots, experimetal data: Iy Ty = 263.55 K, 2) 336.085,
3 310,75, Q, m3/scc.

For high velocitics, duc to dissipation the temperature at the wall becomes higher than ©, and the heat flux ¢ =
Bi(®y — ©, changes its sign and becomes larger in absolute value than it is at lower Bi, which results in an
increasc in 1@P(Vy)! (sce Fig. 1b). Itis clear that at ©, < 0 an inc-casc in Bi will onfv lead to an increase in 1AP]
for any Vy (sce Fig. 1b).

The value of B8 has a great effect on the shape of the curve TAP(Vy)l. At = =, Gn - 0, i.c., the intensity
of heat relcase does not affect the flow dynamics and |AP(Vp) ! tends to the Poiscuille relation. As 8 decreases,
Gn and p(7) increase, the value of the maximum attainable 1AP| decreases, and this pressure is attained at lower
velocities (see Fig. to).

The effects considered that can occur in processing of polymers can give rise to unexpected phenomena.
For example, if in submerged granulation an unheated die board is used, as a rule, a situation arises in which
several tens of holes are clogged by solidified melt and through the other 1-3 holes the melt is fed at the same
flow rate within substantial changes in the pressure in the apparatus.

This situation can arise as a result of some, possibly random, decrease in the flow velocity in some of the
dies, which will result in a longer residence time of the melt in the die. Due to heat transfer, the melt is cooled
more rapidly as compared with the other dies, which results in a decrease in its velocity etc., until the flow in these
holes stops. Meanwhile, in the other dies the velocity increases accordingly, the energy dissipation increases, VP!
decreases, ctc. Eventually, the entire melt will flow through a few holes, which will result in disruption of the
process; therefore, the possibility of this phenomenon should be taken into consideration in designing apparatus
for processing of thermoplastics.

This phenomenon can be avoided by heating the dic channels. At ©, > 0, ncgative feedback between the
flow characteristics and heat transfer appears, i.c., if the velocity in the channel decreascs for some reason, it will
not lead to an increase in the viscosity, and, because of longer residence time of the melt in the channel, the melt
will be heated at the periphery, which will result in restoration of the previous operating conditions. Each die should
be heated separately, and the process parameters for steady operation can be chosen from the curves shown in Fig.
l.

The adequacy of the suggested model of the flows of melts has been verified by comparison of carlier
published data with the results that we obtained for the conditions indicated in the publications. In Fig. 4, one can
see data for a liquid flow with a temperature-dependent viscosity [12]u = 10();) [exp (A/T") - 0.6) ], where A =
1.372-10'° and b = 3.81. The comparison shows good agreement.

NOTATION

a, thermal diffusivity, m?/sec; ¢, specific heat, J/(kg-K); E, activation energy of viscous flow, J/mole; K,
heat transfer coefficient, W/(mZ-K); P, Py, instantaneous pressurc and pressure at the channel inlet, Pa; R,
universal gas constant, J/ (mole-K); Q, flow rate, m3/sec; qvr, Qi transverse convective amd transverse conductive
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heat fluxes, W/mz; r, rg, radial coordinate and radius of the channel, m; T, Ty, current temperature of the melt
and temperature of the melt at the channel inlet, K; Vg, velocity, m/sec; z, lengitudinal coordinate, m; A4, thermal
conductivity, W/ (m-K); u, dynamic viscosity, Pa-sec; p, density, kg/m3; Bi, Biot number; Gn, Gneme—Griffith
number; Pe, Peclet number; Re, Reynolds number; St;, Student number for the i-th layer. Subscripts: a refers to
the environment; i, the layer number; r, z, the radial and longitudinal components of the vector.
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