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Abstract—The problem of convective heat transfer during a slow liquid flow in conical annular channels is
considercd. For third-kind thermal boundary conditions, the problem is solved by separation of variables. The
temperature distribution is represented as the product of an infinite Whittaker-function series in lateral coordi-
nate and an exponential of longitudinal coordinate. Heat transfer in a variable-width annular conical channel is
analyzed by stepwise approximation. Optimization of the distributing sections of extruder dies is shown to be
possible. - .

Extrusion processing of polymers is sometimes con-  ical coordinates with the origin at the vertex of the outer
trolled by heat exchange [1]. Therefore, to optimize the  cone (Fig. 1), which are defined as [9]
extruder design and process parameters, it is necessary - .

to study convective heat transfer in extruder die chan- Z' = Reoso+ XS‘”Q' @
nels. In most extruder dies, there are channels formed y = (Rsino— Xcoso)sing, @)
by coaxial conical surfaces {2, 3]. For a polymer flow- .

ing in such channels, joint solution to the hydrody- x' = (Rsine.— Xcoso)cos . 3)

- namic and heat-transfer equations is very difficult and

can be carried out only by numerical methods. The

problem of convective heat transfer for a non-Newto-

nian liquid flowing in an annular conical channel was

forinulated in [4]. A numerical method to solve this € =RIh, & = Ryh, y =Xh, Vy,= QIS
roblem was suggested in {3], but the jon itself ) N

e not oyt ewed n 13, he’ salution its v = VilVo 11 = (P Pohi{uVy),

The above assumptions lead to a system of hydrody-
namic equations [7], which, in terms of the dimension-
less variables

. - and
Under processing conditions, some molten polymers

behave as Newtonian liquids [6]. For typical flow o = &sino -y coso,
rates and rheological and physical properties of such lig-
uids (0 =~ 5.0 x 107 m¥s, p = 10* Pa s, p = 2500 kg/m’,
A=02W/(mK), ATy =~ 6 K, and ¢ = 2000 J/(kg K) and So = M(2Rysino— hcos0)h
for typical channel geometry (L<0.5 m, h =102-10" m;

see Fig. 1), the Name-Griffith and Reynolds numbers

are far less than unity (Gn <€ 1, Re < 1) [7]. Therefore, Z

the flow can be considered to be laminar, and dissipa-
tive cffects can be neglected. Since the Peclet number
¥e 2100, we can also neglect a variation of the conduc-
five heat flux along the flow direction relative to the
convective heat flux [8].

where

The above assumptions allow us to simplify the sys-
tem of convective-heat-transfer equations and to obtain
&nalytical solutions for some important cases. An anal-
ysis of such solutions would eliminate the need for
“expensive  full-scale experimentation and no less
‘expensive numerical simulation.

Let us consider convective heat transfer in an annu-

. . . Fig. 1. Geometry of a conical channel of a constant width.
ar conical channel of a constant width [7]. Flows in ig, ix, and i, are the unit vectors of the biconical coordi-

‘such a channel are convenient to examine in the bicon- nates.
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is the inlet cross-sectional area of the channel, is written

as
DD—E[ c]fdax(ogz) “@
%% - COS((xc)iin(O!)V’ )
S(ov) =0 ©

with sticking boundary conditions and IT = 0 at the
channel inlet.

With the Lame coefficients calculated in [7], the
heat-transfer equation for the flow between conical sur-
faces is

Jd0 _ 19d /[ 00
D, —— IR e 7
Pe Va" GE)};(G&);() @)
where
o Veh T-T,
Pe = el 0= 7
Evaluation of the Brun number gives
A /l 0.5
"<
"R R s00

for most of the channel. Therefore, the third-kind

boundary conditions [10]

20 .
o = Bi,(©-0))aty=0 8)
and
20 .
a = -Bi,(©-0,) aty=1, )
as well as the channel-inlet condition
O =0af=¢&, (10)

are applicable as a satisfactory approximation. Here,
Bi = Kh/\ is the Biot number, and X is the local heat-
transfer coefficient [8].

To reduce the heat-transfer equation to the dimen-
sionless form, we used AT = T, — 0 = T; to rule out any
limitations on the ambient temperatures at unrelated
boundaries.

In cases important in practice (§ tano. 2 ), the sys-
tem of equations (4)-(6) has the following solution [7]:

_ 6(28ysin0—cosa), ;
T coso.—2Esino (=2, an
6(coso.—2&,sinat) g - 2&tano

Il =- sino, 1—2(”,omno¢ (2
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In view of equation (11), equation (7) takes the form

| 6Pe(2t, cos) 2@ - 20
cosafz“;sxna 1S axz'
Equatidn (13) with boundary conditions (8) and (9)
describes the temperature distribution in the channel.
To solve:equation (13) with boundary conditions
(8)~(10) by separation of variables, we replace the
dependent variable © by @, which is defined as
e WiE Bi;Bi,(©,-0))
OG0 = @&V 5 E, + 7B

Bi,(Bi, + 1)0, + Bi,0,
Bi,(Bi,+ 1)+ Bi,
With function @, the form of equation (13) is

unchanged, and inhomogeneous boundary conditions
(8) and (9) are transformed to homogeneous ones:

(13)

14

P

aX = Bi,® aty =0, (15)
Peley :

P = -Bi,® aty=1. (16)

Channel-inlet condition (1) (§ =&, 0 <y < 1)
appears as
Bi,Bi,(0,-0))
“Bi,(Bi, + 1)+ Bi,
Bi,(Bi, + 1)0, + Bi,0,
— = D& X
Bi,(Bl,+ 1)+ Bi, P o 1)

Next, we represent the function @ as a product
D, %) = Y(E)W(y) and obtain from equation (13)

= yzdg,

Do(x) =
(17)

2&ysino—cosody

D S —
OFe coso—2Esina Y

(18)

g

Y -0Y = (19)

where ¥* is the separation constant, which is always pos-
itive, because, under the conditions of the problem, the
polymer temperature in the channel is finite at any £.

The solution of equation (18) is

¥’ (cos o - 2Esina)’
24Pesino(2&,sino ~ cos o)

Y = Acxp[ J ©0)
where A is an arbitrary constant.

By substituting =2y — 1 and y= 4yt into equation (19)
and the corresponding boundary conditions, we obtain

Wk (1 -AY =0 @0

1.

= RBEY atr=-1, (22)
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ot @3

1., .
= —§B12\P atr=1.

Substituting y = p? and ¥ = @u-4r12 jnto equauon

(21) gives
" 4 3)
+l=c+=+——=|p = 0.
¢ (4 4y 162(9

Equation (24) 1s a_particular case of the Whittaker
equation [11}

24

(25)

with k = /4 and m = 1/4.

The solution of equation (25) is given by the linearly
independent Whittaker functions M,_,(y) and M, _,(y)
[11]. The general solution of equation (24) is then

Ly 3-p 3
0= Ce ’/2)’3/41}71(‘4—" 5 y)
. i (26)
. o v p (1=p 1
+Cye Ty 1 ( i 2» ,Y)y

where |F(0, €; x) is a degenerate hypergeometric func-
tion and C, and C, are arbitrary constants. Equation (21)
then takes the form

() = C &e-urZIZth‘l(E%LL, %; utz)

7

Substituting solution (26) into boundary condi-
ions (22) and (23) gives the expression for determin-
ng the eigenvalues of boundary problem (21)~(23):

JUD,\ D, + DyD,) = 0, (28)

Bi, 1 1 .
D, = ("**H)AFI(-[H §§H)

+p(1 - p), F( =2, z’”)
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e B3

4 2
Lo -5, )
+3U~(3 ﬂ)lpx( 4 ’2'“ ,

Bi
D, = (72—
(1 -p), F( =5 2’”)

Having found the eigenvalues i, as the roots of
equation (28), we obtain the system of the elgenfunc—
tions of the problem:

’J"Il )

4 Y = A/E. 1 /2,F (3 4“:-

+B,e _HH,IZIFI( 4““ 53 Haf )

(29)

where

nz_“[_.“—'M, n=012
- Da(p,)

From equation (21) with boundary conditions (22)
and (23), one can deduce that the eigenfunction; \P, are
orthogonal and (1- #2)-weighted in the interval [-1, 1].

The solution of problem stated by (13), (15), and

(16) is found as the sum of all particular solutions. In
view of £ =2y -1, it is written as

D& 1)

212 (cos o — ZE,sinoc)2 }
3Pesino(2E,sina — cost)

(30)

= imew[
n=0

The coefficients 4, can be derived from the orthogo-
n;\lxty property of the eigenfunctions and condition (17).
=&, we obtain

Dy(1)
@3n

2;1,2,( cos 0.~ 2&,sin a)?
3Pesina(2&,sina — cos U.)J

= i A,,exp[

n=0
Multiplication of both sides of expression (31) by (1 -
)W, followed by integration between —1 and 1, gives
A 212 (cos o - 2, sin o)’
IR eXp[f}Pesin o(2E,sino, — coscx)]
I
ftbo(t)( 1=, (1)de
b 2 (32)

1)
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‘ 217 (coso - 28 sina)? ,
p|:3Pe sino(2&,sino — cosa)} w

1
where ||V, |]? = I(I - t2)‘i’: dt is the squared norm of

-1
the eigenfunctions.

In terms of variables & and %, the solution of prob-
em ((13), (8), and (9)) is

0, x) = ®&n )

o o [8uiE ~Eplcosa— (€ +E)sina]
ZA"CXP{ 3Pe(2E,sinc — cosar)

(33

mex-1’
2

{f@x 1>F1[ = Swer- 1]

# B[S ,sz—l)}}

~This solution enables us to study heat transfer in the
hannel as a function of process parameters. Let us con-
ider symmetrical melt cooling at Pe ~ 1300, Bi; = Bi, =
0, G, x) =0,0,=8,=-05,5=129,& =329,
and o= 15°. Near the channel inlet, the liquid rapidly
“cools at the flow periphery. In the central zone of the
- flow, temperature is virtually invariable because of low
eat conductivity (Fig. 2). As the liquid flows further,
ts mean velocity

T = (2&ysino; - cos 0,)/(2E sino — cos 0)

decreases, causing the cooling of a greater volume of

the liquid far from the walls. The heat fluxes at the
boundaries, g, = ~Bi,(© - ©)) and ¢, = Bi)(0 - ©,),
pidly fall in modulus, because the liquid temperature
ecreases at the walls but remains symimnetrical (Fig. 2).
A similar situation is obtained during symmetrical
- heating. In both cases, the weight-average liquid tem-
‘perature

o]

= e j(x ~0O% )

cosaL— ?.E sino (34)

X (z‘,sm(l——xcosa)dx

varies almost linearly by about 10%. When heat trans-
er is asymmetrical (Fig. 2c), the heat fluxes at the walls
.are nearly equal (Fig. 3), and the mean temperature is
onstant.

THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING ~ Vol. 34 No. 1

HEAT EXCHANGE DURING A SLOW FLOW OF A LIQUID 17

As the angular opening of the cone is increased at
fixed & and flow rate, the mean flow velocity decreases
because of growing the cross-sectional area of the
channel. The Peclet number Pe (i.e., heat-transfer rate)
also decreases. A decrease in flow velocity causes an
increase in the dwell time of the liquid in the channel,
and an increase in o to 40° (Fig. 2d) leads to a larger
heat-exchange surface and, therefore, to better heating
of the liquid. In this case, the mean liquid temperature
is higher by ~20%, although heat fluxes in most of the
channel are lower than those at o, = 15°.

The solution suggested here allows the design of the
conical distributing section of an underwater granulator
to be optimized so that it can provide, for example,
minimum temperature variation in the channel.

We now consider two cases of heat transfer.

Case 1. There is no thermal insulation between the
channel and water flowing around the granulator legs,
and natural heat transfer occurs at the outer boundary.
For the outer boundary, Bi, = 20; for the inner bound-
ary, Bi, =40. The inlet melt temperature Ty is 463 K, air
temperature T} = 293 K, and water temperature T, is
280 K. Q = 5.6 x 10 m¥s, o = 15°, /1 = 0.03 m,
Ey=12.9,and & =329.

Case 2. The channel is thermally insulated from
water carrying away the granules (Bi, = 0.25). At the
outer surface, high-rate convective heat transfer
between water and the heat carrier takes place with
7, =463 K and Bi, = 40. The inlet melt temperature 7;
is463 K.

In the first case (Fig. 4a), the temperature distribu-
tion is similar to that considered above (Fig. 2a). The
only difference is that water cooling at the outer surface
is more intense; that is, the heat flux ¢, is higher
throughout the channel length (Fig. 5a).

In the second case, the heat flux through the outer
surface is negligible (Fig. 5b); the colder layer, result-
ing from heat exchange with water, has time to extend
only over a third of the channel width (Fig. 4b).

In the first and second cases, the mean temperature
is, respectively, 10 and 0.3% lower than the initial tem-
perature (Fig. 6).

The solution suggested can be applied to study mass
transfer in liquids flowing in annular channels between
conical surfaces with nonparallel generators. Such
channels have found wider application than constant-
width channels. A pressure drop in a channel between
concentric conical surfaces with vertices on one side of
the channel can be calculated by a stepwise approxima-
tion of the channel with constant-width annular conical
fragments [7]. This method, no more sophisticated than
others, does not approximate a convergent or divergent
flow by a straight-line stream.

Let us use such an approach to study heat transfer in
a channel formed by circular conical surfaces with
20 = 42°, 20, = 30° hy = 0.03 m, Ry = 0.279 m, and
L=0.6m Param\,ter r (Fig. 7), liquid flow rate, and

2000




30E

10 30 € 10

a @
5
1
0 —

10° 30 & 10 30 &

Fig. 3. Distribution of (1) ¢; and (2) g, along the channel. The conditions (a—d) are the same as in Fig. 2.
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Fig. 4. Distribution of @ in the distributing channel of the underwater granulator in the (a) first and (b) second cases.

temperatures are considered to be constant (T, =463 K,
T, =293 K, and T, = 280 K). Heat-transfer coefficients
K, and K, are 133.3 and 266.6 W/(m? K) (for h = Iy,
Bi; = 20, and Bi, = 40).

Assume that the inner conical surface consists of N
conical fragments whose generators are parallel to the
“generator of the outer surface and are equal to L/N. We
then have a channel composed of N constant-width
coaxial conical channels. In our cases, the major contri-
bution to heat exchange is from convective heat transfer
(Stanton number St = K/(pcVy) < 1072). Therefore, the

x 10

7 @ - (b)
: 5.

2 10 —ou
10
0 ///__ ok 2

1

L 1L 1 1

10 306 10 30 €

Fig. 5. Distribution of (/) g, and (2) ¢, along the channel for
the (a) first and (b) second cases.

width of each of the channels has to be selected such
that the length-average liquid flow velocities in the
approximating and original fragments are equal. This is
attained when the approximating and original frag-
ments have equal length-average cross-sectional areas.
The mean cross-sectional area of a constant-width con-
ical channel with length AL = L/N is
Ry+AL

j I(2Rsing— heosa)dR

Ry

= n[h(2Ry+ LIN)sino.— h’cosa].

(35)

@ o 19w

O x 10?
0

1 1 1 L

10 30 & 10 30 ¢

Fig. 6. Distribution of © along the channel for the (a) first
and (b) second cases.
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Fig. 7. Approximation of a variable-width annular channel
by constant-width annular fragments.

~The mean cross-sectional area of a channel formed by
- conical surfaces with angular openings 20 and 20, is

iven by
Ry+AL
S = = J' [2Rh(R)sino— h*(R)cos a]dR
YT AL

RD

n{(2Ry + LIN)(hy — RotanB)(sino;; - cos ¢, tan )

2 L, 1(LY (36)

+ [RO+ I—VRO + 5(7\7) :'

(2sino, — cosa tanP)tan P — (kg - RotanB)zcos o, },

here A(R) = ho + (R - Ro) tanB, P = 0 — 0y, and kg is
he width of the channel inlet (Fig. 7). .

The width of the ith approximating fragment is

HEAT EXCHANGE DURING A SLOW FLOW OF A LIQUID . 19

derived from relationships (35) and (36):

h; 5

_ (2R, + LIN)tana, {(2Ri+L/N)2tan2(xl
= - .

~(2R; + LIN)(hy; - R;tanB)(tan o, — tanf)
2 oL 1(LY
[tz 5(5) ]

1”2
x (2tanc, — tanB)tanP + (hy; — R,-tanﬁ)z} s

@37

where
R; = Ry+(LIN)(i-1),
ho; = hg+ (LIN)(i - 1)tanf.

Clearly, such an approximation will not affect the
length-average liquid flow velocity and the channel
volume for either a channel fragment or the channel as
a whole. However, the approximating and original
channels will have different heat-transfer surface areas.
In the case that heat transfer is dominated by the heat
fluxes at the surfaces, approximation must not change
the heat-transfer'surface area. The #; value is then deter-
mined from

h; = hy;+ (L/IN)(sinc,; - sing,y). (38)

It was ascertained that, at N — oo in relationships (37)
and (38), h; —= hy;.

Solution (33) is applicable if each ith fragment has
been reduced to the dimensionless form with its pecu-
liar A; value. In calculating the temperature distribution
in the first fragment, we assume that the initial temper-
ature is distributed uniformly and equal to zero. That is,
condition (10) is met. The inlet liquid temperature in

Fig. 8. Distribution of @ in a variable-width channel: (a) oy = 21°, ¢ = 15° and (b) o) = 21°, 0, = 32°.
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Fig. 9. Distribution of © along a variable-width channel: (1)
oy =21°0,=15and (2) o = 21°, 0y = 32°

each subsequent fragment will be given by the function
fitting the outlet distribution of temperature in the pre-
ceding fragment.

In this case, the liquid flow velocity decreases along
the channel more sharply than it does at o, = 0, = 15°
because of increasing cross-sectional area. This behav-
ior is similar to that observed for a constant-width
channel as the angular opening of the cones is raised.
The ratio of the inlet and outlet cross-sectional areas is
=~2.8 for channels with ¢; = 0 = 15° and =9.8 for those
with o =21° and 0, = 15°. As a consequence, the heat-
transfer rate is lower in the latter case. Furthermore, the
channel width is increased, and the heat-transfer sur-
face area is decreased. Therefore, although the dwell
time of the liquid in the channel increases, the central
zone of the flow cools down at a lower rate (Fig. 8) than
in the case depicted in Fig. 4a. There is an isomorphic
correspondence between the regions of definition of ©
in Figs. 8 and 4a, which is given by the coordinate
transformation

& =€ yx =xM1+(E-E)tanpP].

As a consequence, the mean temperature is changed
less (Fig. 9). ’

If K significantly varies along the flow direction, it
is appropriate to take K to be constant throughout an
approximating fragment and equal to its mean value for
this fragment.

Let us consider a channel formed by conical sur-
faces with 20, = 42° and 20, = 46°. The heat-transfer
coefficients at the surface vary as

K, = 4/[hy— (R - Ry)tanB],

In such a channel, the mean liquid flow velocity varies
only slightly along the channel, because the inlet and
outlet cross-sectional areas of the channel are nearly
equal. Therefore, the liquid flow velocity is higher in
this case than in the cases considered above. Further-
more, the channel is narrower, and the heat-transfer sur-
face and heat-transfer coefficients are greater. As a
result, the liquid has a lower temperature throughout

K, = 2K,.

THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING ~ Vol. 34

the channel cross section (Fig. 8) and a lower mean
temperature (Fig. 9).

The solution obtained was used to optimize heat
transfer in the distributing section of the extruder dic of
the underwater granulator used in the production of
thermoplastic polymers.

NOTATION
a—thermal diffusivity, m%/s;
c—specific heat, J/(kg K);
h—channel width, m;
h,, = 0.05—thickness of the channel wall, m;
K—heat-transfer coefficient, W/(m? K);

[—length of the generator of the conical surface of
a channel, m;

P, Py—current and inlet pressures, respectively, Pa;
Q—flow rate, m¥s;
g—nheat flux, W/m?;
R, Ry—current and inlet radial biconical coordi-
nates, respectively, m;
S—cross-sectional area of a channel, m?;
T, To——current and inlet temperatures, respectively,
K;
ATy o—temperature change causing a substantial
change in viscosity, K;
V—velocity, 1:/s;
X—Ilateral biconical coordinate, m;
X', y', 7—Carlesian coordinates, m;
o—nhalf the angular opening of a cone, rad;
Y—conslant;
A-—heat conductivity, W/(m K);
Aw—nheat conductivity of the wall, W/(m K);
H—viscosity, Pa s;
p—density, kg/m¥;
Bi = Kh/A—Biot number;
Gn = U VE (AT o) —Name-Griffith number;
Pe = Vghep/A—Peclet number;
Pr = pte/A—Prandtl number;
Re = hVyp/i—Reynolds number.
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