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In the extrusion of polymeric products such as
strands, granules, tubes, and films, the molten polymer
is forced through diverging channels formed by coaxial
conical surfaces [1, 2]. To optimize the extruder design
and process parameters, it is necessary to study the flow
and heat transfer in extruder die channels. Present-day
processes allow heat-transfer conditions to be varied at
the channel walls, but experimental optimization of
process parameters is rather expensive. In many cases,
it is also unreasonable to numerically simulate polymer
processing because the necessary relationships
between process parameters can be established analyt-
ically. Below, known analytical solutions are used to
develop numerical, asymptotic, and approximate calcu-
lation procedures.

Earlier [3, 4], we reported a solution to the problem
of isothermic flow in conical annular channels with var-
ious wall arrangements. Laminar heat transfer in coni-
cal slits under third-kind boundary conditions was
reported in [5]. In some cases, such as underwater gran-
ulation with a nonheated core, the temperature of one of
the walls clearly varies along the channel. The temper-
ature of the inner channel wall (inner conical surface)
varies from the melt temperature at the die inlet to
about the temperature of the water carrying the gran-
ules away. If the extruder core is heated, the inner-wall
temperature at the channel inlet may exceed the melt
temperature, and in the case of a heated bushing [6], it
may increase along the channel. In the case of blow
extrusion molding, the inner-wall temperature is gov-
erned by the temperature of the air fed into the extruder
die.

To analyze the melt-temperature distribution, we
will consider laminar heat transfer in conical annular
channels under first-kind boundary conditions at a
specified way of variation of the inner-wall tempera-

ture. We will deal with molten polymers that behave as
Newtonian liquids under processing conditions [7]. It
was demonstrated [5] that, for liquid flow rates and
channel geometries important in practice, the Reynolds
and Name–Griffith numbers are far less than unity
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Therefore, polymer flows are typically creeping [8],
heat dissipation can be disregarded, and the variation of
the conductive heat flux is negligible as compared to
the variation of the convective heat flux. In biconical
coordinates (Fig. 1), which are defined as [9]
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the set of axisymmetric heat-transfer equations will
then appear as
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—The problem of convective heat transfer in a divergent slow liquid flow in a constant-width conical
annular channel is analyzed for the case of first-kind thermal boundary conditions and linear variation of the
inner-wall temperature along the channel length. The problem is solved by eigenfunction-series expansion. The
spatial distribution of temperature is represented as the sum of two infinite series in confluent hypergeometric
functions of the transverse coordinate that are multiplied by an exponential function of the axial coordinate and
the angular opening of the cone. The solution is interesting in that it is the superposition of two solutions, each
having its own eigenfunctions and eigenvalues.
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The boundary and edge conditions for this problem
are the following:
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Here,

In practice, 
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, and the solution to the set of
Eqs. (4)–(6) and (8)–(10) is [3]
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Equation (7) will take the form
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A solution to the problem ((16), (11)–(13)) will be
sought for as the superposition of two solutions:
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 is the solution of Eq. (16) with
the boundary conditions
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 is the solution of Eq. (16) for the boundary
conditions
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To solve the problems ((16), (18)–(20)) and ((16),
(21)–(23)), let us introduce new dependent variables:
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 = 1, 2) transform
nonuniform boundary conditions (18), (19), (21), and
(22) into uniform ones:
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The conditions at the channel inlet, given by Eqs. (20)
and (23), will take the form
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Eq. (16) and changing the variables, we obtain nonuni-
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Fig. 1. Geometry of a conical channel of constant width. iR ,
iX , and iϕ are the unit vectors of the biconical coordinates.
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Let us represent the solution of Eq. (30) as the prod-
uct Φi(ξ, t) = Yi(ξ)Ψi(χ) (summation over i is not per-
formed) and consider the uniform equation correspond-
ing to Eq. (30). We will then arrive at the Sturm–Liou-
ville problem stated by the set of equations

(31)

(32)

(33)

Here, µi = βi/4 and βi is the separation constant for the
uniform equation (30).

It has been demonstrated [5] that Eq. (31) reduces to
the Whittaker equation and that its solution is

(34)

where 1F1(α, γ; x) is a degenerate hypergeometric func-
tion and C1 and C2 are arbitrary constants.

By substituting Eq. (34) into Eqs. (32) and (33), we
obtain
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Obviously, Eqs. (35) and (36) are simultaneous only
when C1 = 0 or C2 = 0. In the former case, the equation
for eigenvalues is

(37)

and the eigenfunctions are expressed as
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equation
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and the eigenfunctions are expressed as

(40)

Note that the µn value can be calculated, to an
acceptable accuracy, from the relationship µ1n = 4n +
5/3 [10], and calculations for n > 4, demonstrated the
validity of the equality µ2n = µ1n + 2.

With the use of Eqs. (31)–(33), it is easy to prove
that the sets of functions defined by Eqs. (38) and (40)
are orthogonal and (1 – t2)-weighted in the interval [–1,
1]. Therefore, the source term in Eq. (30) can be repre-
sented as an expansion in the eigenvectors of problem
(31)–(33):

(41)

The orthogonality of eigenfunctions enables us to
determine the expansion coefficients:
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Similarly, in solving the problem ((16), (21)–(23)),
for which the function f2n(ξ, t) is odd in the interval [–
1, 1], the basis will be the set of odd functions defined
by Eqs. (39) and (40).
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problems ((16), (18)–(20)) and ((16), (21)–(23)) are the
sums of the respective particular solutions:

(45)

(46)

By substituting the Φi functions and expansions (43)
and (44) into Eq. (30) and its initial conditions, we
obtain a set of ordinary differential equations for deter-
mining the Yin(ξ) functions:

(47)

(48)

Equations (47) and (48) can be solved by the
method of variation of the arbitrary constant:
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The solution of the problem in terms of the original
variables will appear as

(52)

It enables us to derive an expression for the average
flow-bulk temperature:

(53)

where

(54)

is the average dimensionless velocity.

The dimensionless local heat flux or, in other terms,
the Nusselt number at a channel wall is conventionally
defined as the ratio of the convective heat-transfer coef-
ficient to the difference between the average flow-bulk
temperature and the wall temperature:

(55)

When so defined, Nui may have discontinuities at ξ val-
ues for which the weight-average temperature is equal
to the temperature of a wall. This may also be the case
if Nu is defined as the ratio of the convective heat-trans-
fer coefficient to the difference between the average
flow-bulk temperature and the average (initial or cur-
rent) wall temperature. For this reason, we now intro-
duce the dimensionless convective heat-transfer coeffi-
cient as the ratio of the heat flux at a channel wall to the
scaling temperature

(56)

where n is the normal directed toward the liquid. We
then arrive at the following expressions for the dimen-
sionless heat fluxes at the channel walls:
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By performing differentiation in Eqs. (57), we
obtain

(58)

(59)

where
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Since Eqs. (57) are completely defined by the deriv-
atives of temperature, we will use Eqs. (58) and (59) in
the analysis of heat fluxes at the channel walls.

The parameters defining a solution to the problem
are the Peclet number Pe; the inner-wall dimensionless
temperature at the channel inlet, Θ2; the dimensionless
inlet coordinate ξ0; angular opening of the cone, 2α;
and the parameter b, which defines the distribution of
the inner-wall temperature (temperature of the χ = 0
boundary) over the channel length.

The solution at b > 0 and Θ2 = 0 describes heat trans-
fer in the case that the inner-wall temperature T2 is
equal to the inlet liquid temperature T0 and, if T1 < T0,
decreases along the channel to some temperature T3 <
T2 or, if T1 > T0, increases to a T3 > T2 . The former sit-
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Fig. 2. Distribution of Θ in the channel at ξ0 = 20 and ξ1 = 100: (a) α = 15°, Pe = 104, Θ2 = 0, and b = 0.03; (b) α = 90°, Pe = 2 ×
103, Θ2 = 0, and b = 0.03; (c) α = 60°, Pe = 2 × 104, Θ2 = 0, and b = –0.03; (d) α = 5°, Pe = 2 × 104, Θ2 = 0, and b = –0.03.
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uation can be observed in a submerged granulator with
nonheated core and bushing. The latter situation some-
times occurs in the blow extrusion of polymeric films
and in the underwater granulation with an externally
heated distributing section and heated die channels [6].

The solution at b < 0 and Θ2 = 0 corresponds to the
case that the outer-wall temperature is lower than the
flow temperature at the channel inlet, T1 < T0 , and the
inner-wall temperature varies from T0 to T3 > T2 . This
situation can be observed in the distributing section of
a submerged granulator with a heated bushing and a
nonheated body. At T1 > T0, we deal with a heated body
and a nonheated bushing.

At b > 0 and Θ2 = 0, the thermal boundary layer is
more extensive at the outer than at the inner channel
wall (Fig. 2).  reaches its maximum at the outer
wall, but it falls as the temperature field develops
(Fig. 3). The  value at the inner channel wall near
the inlet is close to zero and increases with changing
inner-wall temperature (Fig. 3). For the Peclet number
and boundary conditions considered, the average flow-
bulk temperature monotonically grows along the chan-
nel, remaining below the inner-wall temperature
(Fig. 4).

Decreasing Pe raises the contribution of heat con-
duction to heat transfer and shortens the length of the
thermal boundary layer at the inlet (Fig. 2b). The
dimensionless heat flux at the outer channel wall, ,
falls sharply as the thermal boundary layer spreads
along the channel and, at some distance from the inlet,
changes its sign (Fig. 3). This behavior of  is
explained by the fact that, at this point, the dimension-
less flow temperature transcends the outer-wall temper-
ature throughout the cross section owing to the heat
influx from the inner wall, whose dimensionless tem-
perature increases along the channel (Fig. 2).

The heat flux at the inner wall, , somewhat
rises along the channel because of the increase in the
inner-wall temperature. However, since the inlet
dimensionless temperature of the outer@wall is higher
than that of the inner wall, and the thermal boundary
layer at the Pe values considered spreads rapidly
throughout the channel cross section, the dimensionless
temperature of the flow near the inner wall transcends
the dimensionless wall temperature at some point, and

 changes its sign. If the liquid is heated from the
outer wall, then, at this point, it begins to cool at the
inner wall, and vice versa. In going downstream, the
inner-wall dimensionless temperature becomes, at
some point, higher than the dimensionless temperature
of the adjacent liquid layer, and the heat flux changes its
direction again (Fig. 3). Starting at this point, the distri-
bution of temperature is essentially linear in any chan-
nel cross section (Fig. 2); that is, as ξ increases, only the
linear term in expansions (58) and (59) remains signif-

Nu1*

Nu2*

Nu1*

Nu1*

Nu2*

Nu2*

20 60 ξ

(a)

–2

Θ

–1

0

1

2

20 60 ξ

0

1

25

3

4

6

Θ (b)

1

–1
6

3

5
4

2

1

20 60 ξ

(a)

–10

∂Θ/∂χ

20 60 ξ

(b)

–10

∂Θ/∂χ

–6

–2

0

2 12

3

4

0

10

1
2

4

3

Fig. 3. Distribution of ∂Θ/∂χ at χ = 0 (solid lines) and χ = 1
(dashed lines): (a) Θ2 = 0; Pe = (1, 4) 104, (2) 2 × 103, and
(3) 2× 104; α = (1) 15°, (2) 90°, (3) 60°, and (4) 5°; b = (1,
2) 0.03 and (3, 4) –0.03; (b) Θ2 = 1.5; Pe = (1, 2) 104 and (3,
4) 7 × 104; α = (1, 3) 15° and (2, 4) 90°; b = (1, 2) –0.03 and
(3, 4) –0.05.

Fig. 4. Distribution of Θ in the channel: (a) Θ2 = 0; Pe = (1,
4) 104, (2) 2 × 103, and (3) 2 × 104; α = (1) 15°, (2) 90°, (3)
60°, and (4) 5°; b = (1, 2) 0.03 and (3, 4) –0.03; lines 5 and
6 represent the dimensionless temperature of the inner chan-
nel wall (χ = 1) at b = 0.03 and –0.03, respectively; (b) Θ2
= 1.5; Pe = (1, 2) 104 and (3, 4) 7 × 104; α = (1, 3) 15° and
(2, 4) 90°; b = (1, 2) –0.03 and (3, 4) –0.05; lines 5 and 6
represent the dimensionless temperature of the inner wall
([chi] = 1) at b = –0.03 and –0.05, respectively.
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icant. Therefore, we can write the following expression
for the limiting  and  values:

(60)

At the channel inlet, the liquid flow gains more heat
from the outer wall than it transfers to the inner wall, and,
as a consequence, the average flow-bulk temperature is
higher than the inner-wall temperature. However,
because the inner-wall dimensionless temperature
decreases along the channel, the temperatures become
equal at some distance from the inlet. Downstream of
this point, the flow temperature varies only owing to heat
exchange with the inner wall, whose dimensionless tem-
perature exceeds both the average flow-bulk and the
outer-wall dimensionless temperatures, and as a conse-
quence, the former is higher than the latter (Fig. 4).

At the points where the average flow-bulk tempera-
ture is equal to a wall temperature, the variation of the
conventionally defined Nusselt numbers (see Eq. (55))
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Fig. 5. Axial distribution of Nu1 (solid lines) and Nu@2
(dashed lines) at Pe = 2 × 103, α = 90°, b = 0.03, and Θ2 = 0.

Fig. 6. Distribution of Θ in the channel at ξ0 = 20, ξ1 = 100, Θ2 = 1.5, α = (a, c) 15° and (b, d) 90°, Pe = (a, b) 104 and (c, d) 7 ×
104, and b = (a, b) –0.03 and (c, d) –0.05.
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with ξ shows discontinuities (Fig. 5), although no pecu-
liarities are observed in the temperature distribution. It
is, therefore, reasonable to use Eq. (57) for the dimen-
sionless heat flux in the analysis of convective heat
transfer in channels whose cross section is a multiply
connected region. Nevertheless, in going downstream,
Nu1 and Nu2 tend to their limiting value Nu1∞ = Nu2∞ =
2 (Fig. 5). Note that Nu1 and Nu2 tend to 2 from below
and above, respectively, for all of the heat-transfer vari-
ants examined.

The existence of the limiting Nusselt numbers sug-
gests that, as the

parameter, and the ξ value in particular, increase, the
heat flux at a channel wall varies as the difference
between the wall temperature and the average flow-
bulk temperature. This is evidence of heat transfer sta-
bilization. From Eqs. (53) and (58) and the Nu∞ values,
we obtain the following expression for steady-state
heat transfer:

(61)

Let us turn to the heat transfer at b < 0, ξ0 = 20,
ξ1 = 100, Θ2 = 0, Pe = 2 × 104, and α = 60°.

In this case, the dimensionless liquid temperature
increases at the outer wall to a greater extent than it
decreases at the inner wall. As a consequence, the aver-
age flow-bulk temperature somewhat increases at the
inlet but then falls along the channel because of decreas-
ing inner-wall dimensionless temperature (Fig. 4).

The heat flux at the outer channel wall, , is a
nonmonotonic function of the axial coordinate. It first
grows because of the developing thermal boundary
layer to attain its minimum and then, provided that the
temperature distribution in the channel is linear, begins
to grow according to Eq. (60). The heat flux at the inner
wall, , monotonically increases owing to the wall-
temperature variation (Fig. 3).

At α = 5° and the same values of the other parame-
ters, the thermal boundary layer has no time to extend
throughout the channel cross section because of the
increased liquid flow rate, which grows hyperbolically
with decreasing α (see Eq. (54)), and the reduced heat-
transfer surface area. As a consequence,  grows

monotonically and  diminishes along the channel
(Fig. 3). The average flow-bulk temperature varies little
(Fig. 3). The solution for Θ2 < 0, b < 0, and T1 < T0
applies to the case that the core tip is cooled below T0
and the core-surface temperature grows along the chan-
nel length. At T1 > T0, the core-tip temperature is above
the melt temperature and the core-surface temperature
decreases along the channel length.

8 ξ ξ0–( ) α ξ ξ0+( ) αsin–cos[ ]/ 3Pe( )

Θ∞
1 Θ2+

2
---------------

b
2
--- ξ ξ0–( ).+=
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Nu2*
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When Pe = 104, Θ2 = 1.5, b = −0.03, ξ0 = 20, and
α = 15°, the liquid flows within the initial thermal
region, as indicated by both the unsteady temperature
distribution (Fig. 6) and the variation of heat fluxes at
the walls (Fig. 3b). Near the inlet, the dimensionless
temperature increases almost equally at the inner and
the outer wall. However, in going along the channel, the
dimensionless temperature of the thermal boundary
layer at the inner wall decreases to become negative,
following the inner-wall dimensionless temperature.
The radial distribution of temperature tends to linearity,
but, for the set of parameters considered, heat transfer
remains unsteady within the channel (Fig. 6). Because
of such distribution of local temperature, the average
flow-bulk temperature varies nonmonotonically (Fig.
4b).

As demonstrated above, raising α to 90° with the
other parameters held constant reduces the average
flow velocity and increases the heat-transfer surface
area. As a result, the liquid stays in the channel for a
shorter time and the thermal wall layers spread over the
entire channel cross section at a shorter distance from
the inlet (Fig. 6b). In this case, the maximum value of
the average flow-bulk dimensionless temperature is
higher than that at α = 15° (Fig. 4b), and both the axial
and transverse distributions of temperature become lin-
ear within the channel. Therefore, the dimensionless
heat fluxes at the walls are described by the linear lim-
iting relationships (60) (Fig. 3b).

Raising Pe to 7 × 104 increases the contribution
from convection to the heat transfer, and the initial ther-
mal region is lengthened as a result. The inner-wall
thermal boundary layer has no time to extend into the
flow bulk even if the inner-wall temperature varies
more considerably than in the previous cases (Fig. 6c).
The flow-bulk dimensionless temperature varies little
within the channel (Fig. 4b), and the dimensionless
heat fluxes do not attain their limiting values (Fig. 3b).
At α = 90°, the thermal layer extends throughout the
channel cross section (Fig. 6d). The temperature vari-
ation range is twice as wide as in the previous case
(Fig. 4b), but the heat fluxes at the walls do not reach
their limiting values (Fig. 3b).

The solution for Θ2 < 0 and b > 0 applies to two
cases: (1) the outer-wall temperature is maintained
below T0, and the inner-wall temperature T2, initially
above T0 , decreases along the channel; (2) the outer-
wall temperature is above T0 , and the inner-wall tem-
perature T2, initially below T0, grows along the channel.

For Pe = 2 × 104, Θ2 = −1.5, b = 0.05, α = 15°, ξ0 =
20, and ∆ξ = 80, the dimensionless liquid temperature
increases near the outer wall (χ = 0) and decreases near
the inner wall (χ = 1) (Fig. 7a). Since the absolute value
of the inner-wall dimensionless temperature at the inlet
is greater than unity, the average flow-bulk dimension-
less temperature slightly decreases near the inlet (Fig.
8a). The greatest wall heat fluxes are observed there
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Fig. 7. Distribution of Θ in the channel at ξ0 = (a, b) 20 and (c, d) 40, ξ1 = (a–d) 100, Θ2 = (a–d) 1.5, α = (a, c, d) 15° and (b) 90°,
Pe = (a–c) 2 × 104 and (d) 2 × 103, and b = (a–c) 0.05 and (d) –0.03.
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Fig. 8. Axial distribution of the average flow-bulk (solid
lines) and inner-wall (dashed lines) dimensionless tempera-
tures: (a) ξ0 = 20, Pe = (1, 2) 2 × 104, α = (1) 15° and (2)
90°, b = (1, 2) 0.05, and Θ2 = (1, 2) –1.5; (b) ξ0 = 40, Pe =
(1) 2 × 104 and (2) 2 × 103, α = (1, 2) 15°, b = (1, 3) 0.05
and (2, 4) –0.03, and Θ2 = (1) –1.5 and (2) 1.5.

Fig. 9. Distribution of ∂Θ/∂χ at the χ = 0 (solid lines) and
χ = 1 (dashed lines) channel walls: (a) ξ0 = 20, Pe = (1, 2)
2 × 104, α = (1) 15° and (2) 90°, b = (1, 2) 0.05, and Θ2 =
(1, 2) –1.5; (b) ξ0 = 40, Pe = (1) 2 × 104 and (2) 2 × 103, α =
(1, 2) 15°, b = (1) 0.05 and (2) –0.03, and Θ2 = (1) –1.5 and
(2) 1.5.



THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING      Vol. 35      No. 1      2001

LAMINAR HEAT TRANSFER IN A LIQUID FLOWING 37

(Fig. 9a). In going downstream, the inner-wall dimen-
sionless temperature grows and, at some distance from
the inlet, transcends the temperature of the adjacent liq-
uid layer, and the inner-wall heat flux changes its sign
(Fig. 9a). The average flow-bulk dimensionless temper-
ature grows uniformly with increasing inner-wall
dimensionless temperature (Fig. 8a), but heat transfer
does not stabilize within the channel.

At a larger α, the thermal boundary layer will extend
throughout the channel cross section at a shorter dis-
tance from the inlet. The dimensionless temperature of
the flow will differ from those of the walls by a lesser
value than it does in the previous case, giving rise to
lower heat fluxes at the walls (Fig. 9a). The heat flux
will change its direction at both walls (Fig. 9a). At the
inner wall, it will do so because, at some point, the
dimensionless wall temperature becomes higher than
that of the arriving liquid, and at the outer wall, because
the dimensionless temperature of the flowing liquid,
which exchanges heat with the inner wall, becomes
higher than the outer-wall temperature.

The heat transfer is also strongly dependent on the
channel-inlet coordinate ξ0. Raising ξ0 at a fixed α
causes an increases in the cross-sectional area of the
channel and in the heat-transfer area. Therefore, at a
constant Pe value, the thermal boundary layer will
occupy the entire cross section at a shorter distance
from the inlet (Fig. 7c). The behaviors of the average
flow-bulk dimensionless temperature and the heat
fluxes will remain essentially unchanged (Figs. 8b, 9b).

Simultaneously reducing Pe and raising ξ0 will
result in a developed temperature field at a short dis-
tance from the inlet. This is clearly seen in the case of
Pe = 2 × 103, Θ = 1.5, b = –0.03, α = 15°, and ξ0 = 40
(Fig. 7d; see also Fig. 6a). In this case, the distributions
of the average flow-bulk dimensionless temperature
and wall heat fluxes in the channel are described by
limiting relationships (Figs. 8b, 9b).

Note that the functional series (45) and (46) are uni-
formly convergent for ξ > ξ0 at any problem parameters
satisfying the imposed constraints [11]. An analysis of
Eqs. (49)–(51) and the numerical summation of series
(45), (46), (58), and (59) demonstrates that, when the
eigenvalues µin and the degenerate hypergeometric
functions are determined with a relative error of 10–16,
the terms of the functional sequences of the partial
sums of the series considered differ from each other by
no more than 0.01 starting at n ≈ INT[ /(ξ – ξ0)2].
Series (45), (46), (58), and (59) were summed with pre-
cisely this relative error. The calculation accuracy can
be checked using the energy conservation law

(62)

Pe

cρQ ∆T T0–( )

=  2π q1 q2–( )R αsin hq2 αcos+[ ] R,d

R0

R1

∫

where q1 and q2 are the heat fluxes at χ = 0 and 1,
respectively. In the dimensionless form, Eq. (62) will
appear as

(63)

Calculations demonstrate that the right and the left
of Eq. (63) coincide to a calculation accuracy.

NOTATION

a—thermal diffusivity, m2/s;
b—coefficient defining the linear variation of the

inner-wall temperature;
c—specific heat, J/(kg K);
h—channel width, m;
L—length of the cone generator, m;
P, P0—current and inlet pressures, respectively, Pa;

Q—flow rate, m3/s;
R, R0, R1—radial coordinate, m;
T, T0—current and inlet temperatures, respectively,

K;
T1—temperature of the outer conical surface, K;
T2, T3—temperature of the inner conical surface at

the channel inlet and outlet, respectively, K;
V, V0—current and inlet flow velocities, respec-

tively, m/s;
X—lateral biconical coordinate, m;
x', y', z'—Cartesian coordinates, m;
α—half the angular opening of the cone, deg;
α1, α2, – ÍÓ˝ÙÙËˆËÂÌÚ ÚÂÔÎÓÓÚ‰‡˜Ë Ì‡ „‡ÌËˆÂ

χ = 0, χ = 1 ÒÓÓÚ‚ÂÚÒÚ‚ÂÌÌÓ, ÇÚ/(Ï2 ä);
β—separation constant;
λ—heat conductivity of the liquid, W/(m K);
ν—dynamic viscosity, Pa s;
ρ—density, kg/m3;

Gn = ν /(λ∆Trheol)—Name–Griffith number;
Pe0 = V0hcρ/λ—Peclet number at the channel inlet;
Re = hV0ρ/ν—Reynolds number.
INT – ÙÛÌÍˆËfl ÛÒÂ˜ÂÌËfl.
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