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S L O W  F L O W S  B E T W E E N  C O A X I A L  C O N I C A L  

S U R F A C E S  

L M. Ui'ev UDC 532.58; 678.027 

The problems o1' a slow Newtonian-/fluid /flow in channels/formed by coaxial cones with or without a common 
apex are solved. Convenient relations/for calculating the drop in pressure and velocity are obtained. 

Recently the technical significance of highly viscous fluids, in particular, in treatment and production of 

plastics and items made of them, has increased considerably. Flows in apparatuses for treatment of polymers take 

place in channels of different shapes. In the majority of the designs of extrusion press molds and die, cable, and 
tube heads [ 1, 2 ] there exists a portion where flows occur between conical surfaces (Fig. 1). 

To choose optimum technological and design parameters of extrusion processes one should develop reliable, 

scientifically grounded methods for calculation of the flow parameters in channels of extrusion heads, whose 
pressure-flow rate characteristic determines the working point of the extruder [11. 

Within the limits of variation of the treatment parameters, melts of some polymers behave like a Newtonian 

fluid [3 ]. For practically important flow rates of these fluids Q = 0.5.10 -4 m3/sec, the rheophysieal properties 

kt - 103 Pa- sec, p - 1250 kg/m 3, 2 - 0.2 W/(m- K), ATrheo I - 6 K [4 ], and the geometric dimensions of the channels 

(Fig. 1) the Nem-Griff i th  number Gn << 1 [4, 5], and the Reynolds number Re << 1. 
The value of the Gn number indicates that dissipative effects do not affect the flow dynamics and they can 

be neglected, which together with good thermostating of extruders [2 ] makes it possible to consider the flow in 

annular conical channels as isothermal. 
A laminar flow between coaxial cones with a common apex was considered in [6 ] in spherical coordinates. 

An analytical solution is obtained for the general case with account for inertia terms in the equations of motion. 
The form of this solution makes its use in practical calculations difficult. In [7 ] a general solution for spherical 
flows is obtained irrespective of the boundary conditions, and in [8 ] a flow of a nonlinear-viscous fluid between 

cones with a constant width of the gap between them is studied by the method of finite elements. The authors of 
[8 ] determine the velocity field and the flow rate from the given pressure drop, although in engineering practice 

the solution of the inverse problem is necessary, as a rule. In [2, 9 ] it is suggested that conical flows be calculated 

by stepwise approximation by cylindrical channels, which can lead to considerable errors. 
The above estimates allow one to obtain simple expressions for calculation of flows between round conical 

surfaces within a wide range of variation of the geometric parameters. These expressions take into account the 

shape of the channel. 
First, we consider a flow between coaxial cones with a common apex. A small Reynolds number allows one 

to simplify the equation of motion and, following [4 ], to write them with account for the axial symmetry of the 

flow in the form 

l O P  1 O (  OVR] 

p OR R 2 OR OR ) + R 2s in(0)  O0 sin(0) R2 , (1) 

1 dP 2 OVg 
l u O O - R O 0 '  (2) 
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Fig. 1. Cross section of a typical die head. 
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Fig. 2. Geometry of a conical gap: a) cones with a common apex (R, RO, RI, 

radial coordinate, coordinates at the inlet and outlet, m; 01, 02, apex angles 

of cones, deg); b) cones without a common apex (L, length of the conical 

portion of the channel, m; h, gap width, m; JR, ix, i~,, unit vectors in a 

biconical system of coordinates). 

1 0 (R2VR) + l 0 (sin0V0) = 0 ,  (3) 
R 2 OR R sin 0 00 

with the boundary conditions for coaxial cones with a common apex (Fig. 2) 

v R = o ,  vo=o, o=o~, (4) 

v R = o ,  0 = 0 2  , (5) 

P = O ,  R = R  1, (6) 

where 

1 02 
= f P (R, O) sin OdO 

cos 01 - c o s  0 2 o~ 
o 

For aperture angles of the cones AO = 02 - Ol - 30 ° the continuity equation (3) makes it possible to estimate 

the angular component of the velocity VO -AOVR,  i.e., VO = o(Vg) ,  and to neglect it in the equations of motion and 

continuity, which in the dimensionless variables 
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are written as 

R V R (? - ?o) ,'o Q 
¢ = - - ,  v =  , H -  , 3 = c o s O ,  v o = -  

r 0 V 0 /z V 0 2,n:R 2 (r i - 32) 

O H  1 1 

0¢ ¢2 at 

OH 2 Ov 
Or - T; Or ' 

The boundary conditions take the form 

I O ( ¢ 2 v ) = 0 .  
¢2 0~ 

v = O ,  3=l :1  ; 

v = 0 ,  ~ = r 2 ;  

n = o ,  ~ = ¢ o ,  

and 

- -  1 ~2 
- -  f I I d 3 .  

1"I - 3 2  _ 31  r l  

The condition of flow-rate constancy is written as 

~2 2 
f va3 = - ¢I (q  - r z ) / ¢  z 

The dependence v -- u(3)/¢ 2 follows from (10), which in combination with (9) gives 

olI 6 u + f' (¢), 

Substituting (15) in (7) and separating the variables, we obtain equations for determining u(r) and/ (~) :  

02u Ou 
( l - r  2) d r 2 - 2 r - - d r  + 6 u = - 2 '  

~4 f' (~) = _ 2t . 

The solution of (16) with account for conditions (l 1)-(14) has the form 

u = ~ (AP 2 (3) + BQ 2 (3) - 1), 

(7) 

(8) 

(9) 

(10) 

(10  

(12) 

(13) 

(14) 

(Is)  

(16) 

07)  

(18) 
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where 

A = 
Q2 (r2) - Q2 ( q )  

P2 (r l)  Q2 (r2) -- P2 (r2) Q2 ('el) ' 
B = 

P2 (r2) -- P2 (r l)  

P2 (r l)  ~2 02)  - P2 (r2) (22 (Zl) ' 

t = 

(r2 2 1 + r  2 a r2 Y-))  in - -  
¢ + 4 -  [ r1- 2 1 - r  2 

P 

r I ( r ~ -  1) 1 + r  I ] 
I n - -  2 (r 2 + r l ) ]  - 1 

r 2 - r I I -- r I 

A 2 2 
C = ~ - ( r  2 + r 2 r  I + r  1 -  1) ,  

and P2(r)  " 0.5(3r 2 - 1), Q2(r) = ( l / 2 ) P 2 ( r )  In [(1 + r ) / ( l  - r) l - ( 3 / 2 ) r  are  Legendre polynomials of the first 

and second kind and second order.  

Using (12), (14), (16), and (17), we write an expression for the pressure distribution: 

and,  averaging it over the channel  cross section, we have 

Setting 02 = ~r/2, we find the solution for a slow axisymmetric  radial flow between a plane and a cone with 

the apex lying on the plane and the axis perpendicular to it. 

Th e  design of the portion of the distribution of a melt flow formed by coaxial cones with a common apex 

is a particular case of the design of extrusion heads. Annular  conical channels can be formed by concentric surfaces 

with a constant distance between them or with an arbi t rary  law of gap width variation. Therefore ,  to select opt imum 

design and technological parameters  we should s tudy the flow between coaxial cones without a common apex. 

We consider an annular  conical channel  of constant width (Fig. 1). Th e  fluid parameters  and the basic 

geometric dimensions of devices for moulding are similar to those given above. Therefore ,  the fluid flow can be 

considered isothermal,  and inertia terms in the equations of motion can be neglected. It is convenient to s tudy the 

equations of hydrodynamics  in this channel  in biconical coordinates [10 ] whose origin coincides with the apex of 

the outer  conical surface (Fig. 1), def ined by the transformations 

t 

z = R c o s a  + X s i n a ,  (21) 

e 

y = (R s in a - X cos a)  sin ~, = f2 sin ~o, (22) 

t 

x = (R sin a - X cos a )  cos ~o = f2 cos ~o. (23) 

Calculating the Lam~ coefficients H x  = 1, HR = 1, H~o = f2 and following [ 11 ], we write the equations of 

continuity and motion in the selected coordinates. 

The  continuity equation for an axisymmetric flow is 

0 0 ( ~ V x )  = O. (24) 
OR VR) + 
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Hence we obtain an estimate of the relation between the quantities VX and VR, Vx ~ 2 V R h / L ,  i.e., Vx = o(VR). 

This  allows the system of equations of hydrodynamics  in the dimensionless variables- 

to be written as 

,~ = Rlro, x = Xl,'o, % = c.2/ (~r~) ,  v = vRI % ,  n = (e  - % )  ro/~, % (25) 

0-~- - ~ ax ° ' (26) 

OH = cos (a) sin (a)  v ,  (27) 
2 

0X cr 

(or)  = o ,  (28)  

where tr = ~ sin a - Z cos a .  

In cases of practical interest  the condition ~ tan a >> X is always fulfilled, i.e., we can set cr = ~ sin a.  

Having est imated the derivaties in the system of equations, we obtain OH/a~ -- v/zo,  OII/O'Z -~ v /~  tan a ,  i.e., we 

can set OII/O~ -- 0 and reduce the system of equations (26), (27) to the following: 

Oil 02v 
O~- OZ 2" (29) 

The  boundary  conditions are  the condition of sticking and the assigned pressure at the channel  inlet: 

u = 0 ,  X = 0 ;  (3o) 

u = 0 ,  Z = X o ,  0 ¢ o = h / r o ) ;  (31) 

r i = 0 ,  ~ = ~ o ,  

and the continuity equation is accounted for by the condition of flow-rate constancy 

X0 

f (~ sin ct - jf cos a) vd)c = 0 .5 .  
0 

The  solution of the system (29)-(32) is the expressions 

6 (x 2 - xox) 
V 

3 
XO (ZO cos a - 2~ sin a )  

(32) 

(33) 

(34) 

6 Xo - 2~ tan a 
rI = ~ In (35) 

go sm a go - 2~o tan a 

We note two limiting cases ensuing from (35): 

1) when a --} 90 °, we obtain an expression for determining the pressure drop in a radial flow between 

parallel planes: 
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Fig. 3. Dependences of (a) the dimensionless pressure drop in the channel  

(solid line - calculation by (35), dashed line - by (40) and (40a) at N - -  

60) and (b) the relative error  for the aforementioned quantities on the apex 

angle of the cone for a conical annular  channel  with a constant gap width. 

H = - 6 In ~- -  , ( 3 6 )  

;Co ~o 

2) when ZO/~O << I, we have an expression for the pressure drop in narrow conical slits [12 ]: 

H =  - - - ~ 6  In ~" 3 ' (37) 
;Co sin a to 

which can lead to large errors in cases where ;C0 is comparable to the radius of curvature of the channel.  

In calculations of the pressure drop in coaxial conical channels  whose gap width is not constant  along the 

flow, e.g., the generatr ix of the inner surface is defined as ;Co = f ( ~ ) ,  it is possible to use a stepwise approximation:  

6 N 1 X 0 i  - -  2~i+1 tan a 
n = - - -  2 ,  - T  I n  , ( 3 8 )  

sin a i= 1 XOi ;cOi - -  2~i t a n  a 

where t i+ l  ffi t0  + ( t N / N ) (  i -- l ) ;  XOi ffi f ( t i ) ;  N is the number  of steps; t0  is the inlet coordinate; t N  is the outlet  

coordinate.  If the funct ion/ (~)  is unknown, an approximate representat ion of it should be used. 

Similarly an expression for calculating the pressure in an axisymmetric  annular  channel  of variable cross 

section with an  arbi t rary  shape of the channel  generatr ix is written: 

H = - 6  ~ N 3 1 In Xoi - -  2~i+1 tan a i , (39) 

i= 1 Z0i sin ct i XOi -- 2~i tan a i 

where  all quantities are  determined for each portion of the channel.  

We note that this approximation allows for the geometric features of the channel  and does not replace a 

converging or diverging conical flow by a straight flow. 

Moreover, if in (38) we set a = 90 °, then, in combination with (34), we obtain approximate expressions 

for calculation of a slow radial  flow between a plane and a cone with an arbitrari ly located apex. 

In [2, 9 ] the pressure drop in an annular  conical channel  is suggested to be calculated by a stepwise 

approximation of the channel  by coaxial cylinders. Having applied this approach to a channel of constant  width, 

following [2 ] we have the relation 

5 
2 4  ( ~  - ~0)  c o s  a 

Ari = - (40) 
3 

X0 [(~1 + ~0) sin 2a -- 2Z01 
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Fig. 4. Dependences of (a) the dimensionless pressure drop in the channel 

(solid line - calculation by (20), dashed line - by (38) at N = 60) and (b) 

the relative error for the aforementioned quantities on the dimensionless 

radius for a conical annular channel formed by cones with a common apex. 

or, following [9 ], the expression 

_ N 1 (40a) 
A l l = -  12~1 ~0(cosa)  4 ~ 2~ i s i n a - x 0 t a n a ,  

NXO i= 1 

which give virtually the same result for N > 20. 

A comparison of the results of calculation of the pressure drop in a conical channel with a constant gap 

width at X0 = 3.33, ~o = 280, ~l " 400 by (35) and (40), (40a) shows a large difference between them, especially 
at apex angles of the cones a > 30 ° (Fig. 3). The application of a stepwise approximation to the flow between cones 

with a common apex gives even greater divergence from the results obtained by (20). 

The results obtained by (38) in this case show good convergence with relation (20), which in the variables 

(25) is written as 

-- '1 + 6~2 (~3 ~03 ) II - ~ . . . .  , (41) 
6~  0 ( r l  - -  r 2 )  

for 01 = 10.91 °, 02 = 15 °, ~0 = 280, ~l -- 400 (Fig. 4) and also within the entire range of variation of the parameters. 

The results presented here along with works performed by the author earlier [4, 5, 13, 14 ] allow selection 
of optimum technological and design parameters of extrusion heads and determination of their pressure-flow rate 

characteristic, using which one can determine the working point of the extruder. 

N O T A T I O N  

d, equivalent diameter, m; V, velocity; T, temperature; P, P0, current pressure and pressure at the inlet, 

Pa; Q, volumetric flow rate, m3/sec; R, R0, Rt,  radial coordinate and coordinates at the inlet and outlet of the 

channel, m; r0, nondimensionalization parameter, as a rule, the radius of the die channel, m; x', y', z', Cartesian 

coordinates, m; a,  apex half-angle of the cone, rad; 2, separation constant; /z, viscosity, Pa.sec; 0, angular 

coordinate, rad; X, transverse biconical coordinate, m; Gn =FV2/2ATrheol , Nem-Griff i th  number; Re = dVp/p,  
Reynolds number. 
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