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THE DESIGN OF OPTIMUM GEOMETRY OF CORRUGATED PLATES IN
PLATE HEAT EXCHANGERS

L.L. Tovazhnyanski, P.A. Kapustenko, L. M. Uliev, A.Yu. Perevertilenko
Kharkov State Polytech. Univ., Dep. Chem. Eng., Frunze St. 21, 310002, Kharkov, Ukraine;
Tel. (380) 572-400-893, Fax. (380) 572-400-632, E-mail: ulm@lotus.kpi.kharkov.ua

The mastering of new resource saving technology is the important problem which deter-
mines the increase of national income in the industry. For the branch of heat transfer equipment
this problem can be solved by reduction of the overall dimensions and specific metal capacity
of the heat exchangers. This paper deals with the solution of the named problem with designing
of the plate heat exchangers which are the most perspective equipment in this branch [1].

Because experimental selection of optimum geometry of the heat exchanger surface is
very expensive the interest to the creation of scientifically based research and calculation meth-
ods for elements of heat exchange equipment is growing now.

Modelling of convection heat transfer in channel with corrugated walls (Figure 1) is very
complicated, through intricate three-dimensional flow of fluid. The solution of differential
equation of transfer for turbulence flow, which is more interesting practically, is not always
possible even for rectilinear channels [2]. So the pressure drop with fluid flow for constant
properties in the plate heat exchanger may be calculated with the help of Darcy's law [3].
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The expression for calculation & we found with the help of statistic treatment of the ex-
perimental data received for the channels which are distinguished from one another by the ge-
ometry of corrugations [4]:
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where B— parameter geometry size of corrugation, what depends on its height -h and distance
between adjacent crests- 1.

The width of the entry and exit section corresponded width of the channel, i.e., redistri-
bution of the base of liquid flow was not there.

Using of (2) by the method of modified thermal hydrodynamics analogy the expression
for the heat transfer coefficient was obtained, too [5]:
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where 8- the function of pressure gradient.

The dependence (1) is correct for flow in the porous medium, too [6], because of to cell
structure of channel the flow between corrugated plates we can consider as two-dimensional
flow in porous medium between smooth parallel plates, i.e., as non linear analogue of the cell
Hele-Shaw in shape of the plate heat exchanger [7,8].

The relationship (1) we can write in form
dp
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where k dependent only from geometric parameters of the channel, f(v) — as a rule, is power
function of velocity [3]. For two-dimensional flow we can express the pressure gradient as:
Zi; = _kijfj (V) ) (5)

were k; — tensor value which characterise the resistance of medium to flow and it is on its
physical sense inverse to the tensor of penetrability in the theory of filtration, V — the filtration
velocity of liquid.

Figure 1. The plates of heat ex-
changer of the type 0.3 E.

The medium of interplate chan-
nel can be considered as orthtropic be-
cause the corrugation of plates and their position (Figure 1) allow to choice two mutually or-
thogonal directions on which the values of coefficients of resistance are extreme. In the system
of co-ordinates connected with the main axises of tensor k;; (Figure 2) the gradient of pressure
is written down in canonical form as:

gradP =— Tkxsign(Vx) v, - ]kesign(Vy)be v (6)
where s, s,= s(B, X, ); K ,Ky - the coefficients of resistance along and across of the channel.
We introduce the dimensionless variables and parameters '
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and write projection of equation (5) on co-ordinate axises and continuity equation in the form
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The boundary conditions for this set of equations will be conditions of impenetrable on
the sides and constant gradients of pressure on entry in the channel and on exit from it, given
by constant flowrate of fluid (Figure 2)
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These conditions were written for "left" of the channel, for "right" they were written
similar.

Let us differentiate the equation (8) and (9) with respect to corresponding co-ordinate.
Then we can get derivatives of velocities, substituting which in continuity equation we get up
the expression describing the field of pressure in the channel of plate heat exchanger:
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L V, Figure 2. Scheme of the channel and numerical grid.

N g ) The set of equations (11)-(16) were integrated numerically by the
Pus>roty v method of transition to a steady state. For
02,8,/ this the equation (12) was written in non-

25~"29%2 - . . .
> stationary form, i.e. the left part of it was
A > . ..
> ‘ Figure 3. To the definition of the angle
il Q] P between filtration velocity and corrugation.
v Iy equalled to derivative 6%’ where T is
2 J 4 - . . . . .
) i1 l /290 some dimensionless time. Space derivations
% 0 Vi X were approximated by centre finite differ-
XZA » ences on numerical grid (Figure 2). The set of ordinary differential equa-

0 H2 H X tions describing the pressure T in each grid-point was obtained. These
equations were integrated by method of Gear [9] to reach the steady state. The constant of
flowrate was check for each cross-section on the grid during calculation.

Integration of obtained set gives the distributions of dimensionless pressure and compo-
nents of velocity on the field of heat transfer area.

With the help of this data and expression (3) we should obtain the distribution of heat
transfer coefficient on plate, but previously it is need to define for any direction of filtration
velocity in the channel between plates (Figure 3).

The expression (2) was obtained with condition that V was directed along the plate and
¢ was the angle of inclination of corrugation to direction of velocity. The angle of corruga-
tion’s inclination to stream change on m/2-¢ with the changing of velocity direction on w/2
(Figure 3). This allows to define an angle of corrugation’s inclination to stream ¢" if compo-
nents Vy and V, are know, i.e.£ in equation (3) will be defined for the angle:
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The distribution of velocity in adjacent channels is symmetric about main axis of the plate
with equal conditions for heat-transfer medium, i.e. the heat transfer coefficients will be sym-
metric, too:




! [ r ‘ ’ 144
\V‘,j‘:kVNH—Ljs_)ai,j = 0N jo (18)

1

where '-for left channel, "-for right, i=1,2,.....,N, j=1,2,.....M. The overall heat transfer coeffi-
cients, in this case, are defined as:
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where 8, = 10° m, A, =60 W m'K, -the thickness and thermal conductivity of the plate.

This model shows significant divergence between calculation results and experimental re-
sults, obtained on the standard heat exchangers with the plates of type 0,6 [3,10]; where ¢ =
60° on whole field of the plate, L= 1,1 m, H= 0,55 m, = 18 mm, h = 4 mm. The experiments
were performed for liquid with parameters: c= 4,174 kJ/kgK, u= 0,4997-10° Pa-s, A= 0,648
W-m™-k!. Comparison shows that average errors for calculation of pressure drop and mean

overall heat transfer coefficient are so-

a b // mach 15% (Figure 4).
-5 -3

AP.10 50 I(<c-‘;]1c.()) ,// L7 Figure 4. Comparison of the calcu-
Al // o * lated values of pressure drop (a) and av-

.l A erage overall heat transfer coefficient (b)

//;/ with experimental results (points), the

e A solid lines- that is ideal coincidence, the

ve S0 dashed lines - boundaries of 15% devia-

A tions. AP, Pa, K -W m’k".
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K-10~ Similar investigations were per-

) formed for widely used low heat ex-
changers with plates of type P 0,6-2 [10], which have on allocation section the angle of corru-
gation inclination to main axis of plate 15° and on base field ¢ = 40° (Figure 2). In this case
the condition of conjugation must be performed for a section with different angles o:

Mt :
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where Any, An- the length of steps on grid in the n- direction for section 1 and 2 (Figure 2).

\Y% c Figure 5. The distributions
43 o of velocity modulus (a, b, ¢)
and components Vy (solid line),
Vy (dashed line) (d, e, f) for
heat exchanger of type P 0.6-2
across of the channel; a, d -Q=
0,278 10° m’c’; b, e - 0,956
1073; the distance from begin-
v ning of the plate: 1-4 sm, 2-8,

S 3-12,5-20,6-557-28sm. V,

: ms’; H, m.
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In this case the resistance
to flow along the plate is sig-
nificantly less than across the
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Figure 6. The distributions of the heat
exchanger coefficient o overall heat ex-
changer coefficient K across of the channel.
Designation is alike to figure 5. o, W-m™K.

plate (k«/ky1 = 80, kx/Kky» ~ 6) in conse-
quence of that the liquid has not time uni-
formly to distribute on cross-section of the
channel and the velocity of liquid on collec-
tor side is the biggest for any cross-section
(Figure 5). Owning to such distribution of
the velocity the distribution of heat transfer
coefficient is very uniformly on the cross of
plate (Figure 6), and this leads to the
stretched in shape of a pike distributions of
overall heat transfer coefficient across the
plate.

On the distribution section of plate the

modulus of velocity is slightly bigger than on base field because the cross-section here is less.
Here the value V, is bigger, so the distribution of the fluid stream across the channel occur
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here. Then V, decreases to 0 and the
flow becomes practically rectilinear
(Figure 5). Owing to such distribution
of velocity the heat transfer and overall
heat transfer coefficient on entry sec-
tions are higher than on the base field
(Figure 7). However the distribution of
K is symmetric to main axis of the plate
owing to symmetry of o distribution in
the adjacent channels. The presented
results show that in heat exchangers P
0,6-2 the corrugations of the plates are
njt proper designed, at the least on the
entry and exit sections.

Figure 7. The distribution of coefficients o and K for the plate P0.6-2 (K.-calculate value,
K.-experimental).
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The influence of the changes in corrugated field of plates
on heat exchange was investigated by numerically for the plates
of type 0,6 and their modifications.

Figure 8. The pressure drop distribution along the channel:
1- for variant a)-2 for b), 3- for ¢), 4- ford). L, m.

Let us consider the heat exchanger with flow rates in adja-
cent channels Q=0,137-10”m’c for five variants of corrugated

field:

a) @= ¢= 60°, ;= L= 18 mm, h;= h,= 4 mm;
b) @1= 60°, @= 60°, [, = L,= 18 mm, h; = h,= 4 mm;
¢) @1= 70°, o= 65°, [;= 36 mm, /,= 18 mm, h;= h,=4 mm;



d) 9= @= 60°, Iy= L= 18 mm, h;= h,= 3 mm;
e) o= 70°, = 65°, ;=36 mm, /= 18 mm, h;= h,= 3 mm.

The distribution of pressure along the channel is defined by shape of plate corrugation. In
the cases a) and d) it is almost linear as corrugation of the plates is uniform.

L L P L€ LA Figure 9. The distribution of heat
o-10 a-10 o-10 o-10 exchanger and overall heat exchange
coefficients across the channel for vari-
ants a), b), ¢) and d) (a-d accordingly);
the distance on axis y from beginning of
the plate is: 1- 4 sm, 2- 8, 3- 12, 4- 16,
5- 24, 6- 55 sm.
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107 K10 K10 gation inclination on the boundaries of
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because the resistance to flow and grad

ek ] : 4 : /5\4 4
7\(\4 4 ﬁ( 4 ;é\;‘ P change too (Figure 8). The heat
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transfer coefficient has similar distribu-
tion on the plate field.

Where value grad P is big they
reach the maximum values (Figure 9).
With it on the distribution regions
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Figure 10. The distributions of the coefficients _5"
o and K on the field of plate for variant a).

Figure 11. The distributions of the coefficients
o and K on the field of plate for variant b).

the profile o is not symmetric so that here the profile of velocity is not formed yet. For variants
a) and d) it is more expressed (Figure 9,10). In case b) ky2>ky1, and Ky1/ka~0,1, Ky/Kx~0,01
that promotes more uniform distribution of liquid on cross-section of the channel. Therefore o

Figure 12. The experimental plate
with "S" corrugations.

and K on the entry and exit are dis-
tributed more uniformly and on the
base field of plate their values are
higher than on the distribution regions (Figure 11). The average overall heat transfer coefli-




cient K for variant b) is higher on 41.2% than in initial variants a). But AP, however, increases
on 243%. In the case c) K increases on 24,3% in comparison with a) and AP on 40%. In the
cases d) and e) the increasing of K is less than average comparative mistake and AP increases
significantly and we can say that the change of corrugated field is more favorably for variant c).
The plate with curvilinear "S" - alike corrugations (Figure 12) was designed for treat-

.. -4 -3 .. -3 N -3 . . . . .
K, 10 K107 %, 10 K10 Figure 13. The distributions of resistance coef-

ficients: a) along of center axis of channel, b-across
of the channel for y= L/2; 1, 2, 3, 4-distribution of
Ky, 5, 6, 7, 8-k 1, 5- for "S" corrugation with the
change of inclination along the center line 50°-70°;
2, 7 "S" corrugation with inclination on axis 60°; 3,
8 - 45°-75°; 4, 6 - 45°-70°, L, m.
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ment of high-viscosity liquids [11-13]. The numeri-
1 T L . cal and physical experiments were performed to de-
0 055 L o o5 H fine the efficiency of these plates with treatment of
liquid with constant properties. The investigation were done on base of the plate 0.3 E with
L=1.1, H=0,25 m, h= 4 mm, R = 0.7, the distance between next crests along center axis lo = 20
mm with the following variants of corrugations: 1) the plate of type herringbone pattern with ¢
= 60°; 2) the plate with "S"-alike corrugations and with constant angle of their inclination
along the center axis ¢ = 60°; 3) "S"-alike corrugations with the change of inclination angle
along the center axis from 45° to 70°; 4) "S"-corrugations with the change o from 45° to 70°,
5) "S"-corrugations with the change ¢, from 50° to 70°. The properties of fluid kept previous
and flow rate is Q = 5-10* m’c. The distribution k. and x, for the chosen cases are shown on
the figure 13.

As in the channels with "S" -alike corrugation of plates x and ky are functions of coordi-

nates so the equation (12) must be recast as:

RvY™ A62H+RS O +x, s Ry A62H+Rs %y 0 (21)
KySy Vyy axz Vxx aX xSx Vxx anz Vyy an =y,
where it is taken into account that the coefficients k depend on ¢ stronger than power s.
Figure 14.
r r b r a r b .
Vyf‘z‘: 3,0 Vy*3 L 1 43 The distribu-
{ vy tions of the
<D A 5 [ NN
0 4&( ;\}// 03 54 Y velocity com-
i i i ponents across
111 1 I Y S W I N A R | e 1
the channel: a -
\ A : : L v, : : ! for the plate of
] 1 2 )/ ) i%/ % the type her-
051 i/\ - 3 051 G N ringbone  pat-
7_{/4\ B 4 _4: f 5 : 4 tern, b- for the
e : =S plate with "S"
0 o125 o250 0 0125 H 0 0125 o250 ©0 0125 H )
corrugations

where ©o=60°; 1-y= 0.025m, 2-0.05, 3-0.075, 4-0.1, 5-0.19, 6-0.55m.
Figure 15. The distribution of the velocity components across the channel for the plate

with "S" corrugations and changing their inclination along center line 45°-70°; a - first half of
the plate; 1-y= 0.025m, 2-0.05, 3-0.075, 4-0.1m; b) - second half: 1-L-y= 0.025m; 2-0.05, 3-
0.075, 4-0.1, 5-0.55m.



07 | —AP-107 The boundary conditions the method of solution remain pre-
vious.

In case 1) the resistance to flow along the channel is slightly
0s L more than across the channel, and the length of the channel is sig-
nificantly bigger than its width that favours to set up the uniform
profile of velocity (Figure 14).

04

03T s Figure 16. The pressure drop distribution along the center line

02 - ! \ of channel; 1- for plate with "S" corrugation and @=70°-75°, 2-
5 "fir", 3-p=45°-75°, 4-50°-70°, 5-45°-70°.

0.1 |-

=" ¢ In the channels with plates of case 2) the distributions x, and

o 02 04 06 os 10L Ky in cross-section are non-uniformly: k, is maximum in the center

and it decreases to periphery of the channel, and conduct of x, is

reverse. This means that resistance to liquid motion along the channel on periphery will be less

and the stream of fluid there will be more than in center (Figure 14).

In accordance with such distribution of stream on the distribution region the cross com-

ponent of velocity Vy is rather higher for 2 case than for 1 and the biggest part of the fluid di-
rects to periphery of the channel.

b > d . e e .
0107 “ oc-10’3/\ o-107 ¢ o 107 Figure 17. The distributions of
I ] /\ | , I a and K across the channel: a-for
I R YA N variant 1) 1-y= 0.025 m, 2-0.05, 3-
T 9 10 .
nl .27/\ 0 e L 0.075, 4-0.1, 5-0.55m; b, c- for
A . 67 j“/l\ ~r————"variants 4) and 5); 1-y=0.025 m, 2-
TNES Ty fesdl sy 005, 3-0075, 401, 5019, 6
’TT—:_SR ﬁ -4 3 5 4 3 0.55, 7-1.025, 8-1.05, 9-1.075 m,
2112 4 1N [ S N IS S

d) - for variant 3) 1-y=0.025 m, 2-

0.05, 3-0.075, 4-0.1, 5-0.19, 6-

K-10’3\(l K-107 K-lO‘; K-IO’*’ll 0.55, 7-0.31, 8-0.81, 9-1.025, 10-
7\ 1.05, 11-1.075, 11-1.075m.
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small, kx >> «, because the liquid
has not time to distribute uniformly on width of entry region, and owing to this Vy in within the
distribution region is higher at the collector hole (Figure 15). Further the distribution of liquid
velocity is analogously to distribution in 2) case as the resistance to motion of liquid on periph-
ery is less than in the center. However on the exit because of ky >>kx (the inclination of corru-
gation is big) the cross component of velocity increases (Figure 15). The distribution of pres-
sure is determined, in the main, by the character of resistance coefficients of distribution. The
distribution of pressure is almost linear for uniform of their distribution (Figure 16). In case 2)
the gradient of pressure is less than in case 1) as the resistance to flow on periphery of the
channel is less. For variants 3), 4), and 5) AP is significant less than in first two cases as the
inclination of corrugation to axis here is less, i.e. and «y is less. But then along the channel the
inclination of corrugation to axis increases, that leads to sharp increasing of pressure drop on




the exit from the channel where region of flow almost is partitioned off by corrugations with
the inclination near to 75°.

The distributions of heat transfer coefficients are alike to distribution of pressure gradi-
ent. In the case 1) o has maximum on the distribution regions where absolute value of velocity
is maximum (figure 17). In the cases 3)- 5) the heat transfer coefficient firstly decreases on en-
try because of diminishing of velocity modulus but then with increasing @, it increases. The
distribution of overall heat transfer coefficients is alike to distribution of o (Figure 18). For
case 1) when the distributions «x and «, are uniform we obtain sufficiently even distribution o
and K. In the cases 3)- 5) in the beginning of flow where the inclination of corrugation is not
significance yet, the distributions o and K are almost uniformly (Figure 17), although the ve-
locity is increased to periphery of the channel, but «, is decreased to periphery that leads to
even distribution of heat transfer coefficient. With further flow K is increased in accordance
with o (Figure 19).

Table L. The comparison of pressure drop AP and average overall heat transfer coeffi-
cient K for different types of plates.

No. Type of plate AP-107, Deviation AP K, Wm’k" Deviation K
Pa fromNo. 1, % from No. 1, %

1 herringbone 0.23 0 2500 0
pattern
«S»-corrugation

2 @y=60° 0.124 -46 2960 18

3 @o=45-70° 0.96 -15 2900 16

4 Po=45-75° 0.615 167 3460 36

5 @o=50-70° 0.221 -4 3250 30

K-107° [Wm”K"]

K-107°

6 ‘E
N 5
5 :‘)\ 4
zr
7 3
4 l 2
| 1
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| L m)
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Figure 18. The distribution of overall heat transfer coefficient along the center axis of the
plate: 1-for plate of the type herringbone pattern; 2- for plate with @o= 45°-70°; 3-for plate
with o= 50°-70°; 4- for plate with @¢= 45°-75°.

Figure 19. The distribution of overall heat transfer coefficient on the field of plate with "S"
corrugations and with the exchange of inclination along the center axis from 45° to 70°.




It is clear from table 1. that the plates with "S"-corrugations have greater K for lesser en-
ergy expenditares, except the fourth case where pressure drop is sharply increased on exit sec-
tion because of big inclination of corrugations. Here we can make the conclusion that the
plates with *S"-corrugations are more efficient. The experiments were performed for the text
of the created model.

For this the flat sheet of the plate type 0.3 E was chosen and on it were brazed the wires
alike to rectilinear and "S"-corrugations (Figure 12).

The comparison of heat flux obtained on a pressed plates with the flux obtained on the
plates with the brazed rectilinear wires showed that pressed plates were more about 28% ef-
fective. The experiments performed on the plates shown on figure 12, allow to define that for
equal of pressure drop the average overall heat transfer coefficient on the field of plate with
*S"_corrugations is about 30% bigger than on the field of plate with brazed rectilinear wires.

NOMENCLATURES:

c-specific heat, J kg’lK'l; d.-equivalent diameter, m; H- weight of plate, m; h- high of
corrugation, m; M, N- numbers of steps in y and x directions; P, P, - pressure current and on
entry, Pa; Q- flow rate, m’s’"; R- radius of curvature along "S" corrugation, m; x, y - Cartesian
coordinates; Re = Vdep/p -Reynolds number; Reo= Vod.p/u - Reynolds number on entry; Pr =
pc/A Prandtl number; o-heat transfer coefficient, Wm™K"; 8-thickness of plate, m; A-thermal
conductivity, Wm'K™; @-angle of corrugation inclination to center axis of plate, degree; @o -
angles of inclination on entry and exit, degree; p- viscosity; Pa s; p- density, kg m™; k- resis-
tance coefficient.

Indices: x, y-directions along coordinates; p-plates, I-liquid; 1 - value for entry; 2- for
base of field of plate.
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